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Abstract
The human genome project has been recently complemented by whole-genome assessment sequence of 32 mammals and
24 nonmammalian vertebrate species suitable for comparative genomic analyses. Here we anticipate a precipitous drop in
costs and increase in sequencing efficiency, with concomitant development of improved annotation technology and,
therefore, propose to create a collection of tissue and DNA specimens for 10 000 vertebrate species specifically designated
for whole-genome sequencing in the very near future. For this purpose, we, the Genome 10K Community of Scientists
(G10KCOS), will assemble and allocate a biospecimen collection of some 16 203 representative vertebrate species spanning
evolutionary diversity across living mammals, birds, nonavian reptiles, amphibians, and fishes (ca. 60 000 living species). In
this proposal, we present precise counts for these 16 203 individual species with specimens presently tagged and stipulated
for DNA sequencing by the G10KCOS. DNA sequencing has ushered in a new era of investigation in the biological
sciences, allowing us to embark for the first time on a truly comprehensive study of vertebrate evolution, the results of
which will touch nearly every aspect of vertebrate biological enquiry.
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The bold insight behind the success of the human genome
project was that, although vast, the roughly 3 billion letters
of digital information specifying the total genetic heritage of
an individual is finite and might, with dedicated resolve, be
brought within the reach of our technology (Lander et al.
2001; Venter et al. 2001; Collins et al. 2003). The number of
living species is similarly vast, estimated to be between 106

and 108 for all metazoans and approximately 6 ! 104 for
Vertebrata, which includes our closest relatives (May 1988;
Erwin 1991; Gaston 1991). With the same unity of purpose
shown for the Human Genome Project, we can now
contemplate reading the genetic heritage of all species,
beginning today with the vertebrates. The feasibility of
a ‘‘Genome 10K’’ (G10K) project to catalog the genomic
diversity of 10 000 vertebrate genomes, approximately one
for each vertebrate genus, requires only one more order of
magnitude reduction in the cost of DNA sequencing, after
the 4 orders of magnitude reduction we have seen in the last
10 years (Benson et al. 2008; Mardis 2008; Shendure and Ji
2008; Eid et al. 2009). The approximate number of 10 000 is
a compromise between reasonable expectations for the
reach of new sequencing technology over the next few years
and adequate coverage of vertebrate species diversity. It is
time to prepare for this undertaking.

Living vertebrate species derive from a common
ancestor that lived between 500 and 600 million years ago

(Ma), before the time of the Cambrian explosion of animal
life. Because a core repertoire of about 10 000 genes in
a genome of about a billion bases is seen in multiple, deeply
branching vertebrates and close deuterostome sister groups,
we may surmise that the haploid genome of the common
vertebrate ancestor was already highly sophisticated. At
a minimum, this genome would have consisted of 108–109

bases specifying a body plan that included, among
other features: 1) segmented muscles derived from somites;
2) a notochord and dorsal hollow neural tube differentiating
into primitive forebrain, midbrain, hindbrain, and spinal-
chord structures; 3) basic endocrine functions encoded in
distant precursors to the thyroid, pancreas, and other
vertebrate organs; and 4) a highly sophisticated innate
immune system (Aparicio et al. 2002; Dehal et al. 2002;
Hillier et al. 2004; Sodergren et al. 2006; Holland et al. 2008;
Osorio and Retaux 2008; Gregory 2009). In the descent of
the living vertebrates, the roughly 108 bases in the DNA
segments that specify these sophisticated features, along
with more fundamental biological processes, recorded many
billions of fixed changes, the outcome of innumerable
natural evolutionary experiments. These and other genetic
changes, including rearrangements, duplications, and losses,
spawned the diversity of vertebrate forms that inhabit
strikingly diverse environments of the planet today. A G10K
project explicitly detailing these genetic changes will provide
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an essential reference resource for an emerging new
synthesis of molecular, organismic, developmental, and
evolutionary biology to explore the vertebrate forms of life,
just as the human genome project has provided an essential
reference resource for 21st century biomedicine.

Beyond elaborations of ancient biochemical and de-
velopmental pathways, vertebrate evolution is characterized
by stunning innovations, including adaptive immunity,
multichambered hearts, cartilage, bones, and teeth, an
internal skeleton that has given rise to the largest aquatic
and terrestrial animals on the planet, a variety of sensory
modalities that detect and process external stimuli, and
specialized endocrine organs such as the pancreas, thyroid,
thymus, pituitary, adrenal, and pineal glands (Shimeld and
Holland 2000). At the cellular level, the neural crest,
sometimes referred to as a fourth germ layer, is unique to
vertebrates and gives rise to a great variety of structures,
including some skeletal elements, tendons and smooth
muscle, neurons and glia of the autonomic nervous system,
melanocytes in the skin, dentin in the teeth, parts of
endocrine-system organs, and connective tissue in the heart
(Meulemans and Bronner-Fraser 2002; Baker 2008). In-
tegration of sophisticated vertebrate sensory, neuroanatom-
ical and behavioral elaborations coupled with often dramatic
anatomical and physiological changes allowed exploitation
of oceanic, terrestrial, and aerial ecological niches. Antici-
pated details of expansions and losses of specific gene
families revealed by the G10K project will provide new
insights into the molecular mechanisms behind these
extraordinary innovations.

Adaptive changes in noncoding regulatory DNA also
play a fundamental role in vertebrate evolution and
understanding these changes represents an even greater
challenge for comparative genomics (Hoekstra and Coyne
2007; Stranger et al. 2007). Almost no part of the known
noncoding vertebrate gene regulatory apparatus bears any
discernable resemblance at the DNA level to analogous
systems in our deuterostome distant cousins. Yet, non-
coding DNA segments represents the majority of the bases
found to be under selection for the removal of deleterious
alleles, and are likely to form the majority of the functional
units in vertebrate genomes (Waterston et al. 2002; Siepel
et al. 2005). Noncoding DNA segments are also hypothe-
sized to be the major source of evolutionary innovation
within vertebrate subclades (King and Wilson 1975; Holland
et al. 2008). The origins and evolutionary trajectory of the
subset of noncoding functional elements under the
strongest selection to remove deleterious alleles can be
traced deep into the vertebrate tree (Bejerano et al. 2004), in
many cases to its very root, whereas other noncoding
functional elements have uniquely arisen at the base of
a particular class, order or family of vertebrate species.
Within vertebrate lineages that evolved from a common
ancestor in the last 100 My, such as placental mammals
(;5000 species), modern birds (;10 000 species), and
acanthomorphan fishes (;16 000 species), evolutionary
coalescence to a common ancestral DNA segment can be
reliably determined even for segments of noncoding DNA.

This enables detailed studies of base-by-base evolutionary
changes throughout the genome, in both coding and
noncoding DNA. Thus, the G10K project will provide
power to address critical hypotheses concerning the origin
and evolution of functional noncoding DNA segments and
their role in molding physiological and developmental
definitions of living animal species.

Through comprehensive investigation of vertebrate
evolution, the G10K project will also lay the foundation
needed to understand the genetic basis of recent and rapid
adaptive changes within species and between closely related
species. Coupled with evolutionary studies of recently
diversifying clades, it will help address an increasingly urgent
need to predict species’ responses to climate change,
pollution, emerging diseases, and invasive competitors
(Stockwell et al. 2003; Bell et al. 2004; Kohn et al. 2006;
Thomas et al. 2009). It will enable studies of genomic
phylogeography and population genetics that are crucial to
assessment, monitoring, and management of biological
diversity, especially of threatened and endangered species
(Brito and Edwards 2009). Recent studies validate some of
the potential contributions that the availability of genome
sequences can provide to endangered species conservation
efforts (Hillier et al. 2004; Romanov et al. 2009). Whole-
genome sequence assemblies will be essential to facilitate
genome-wide single nucleotide polymorphism discovery and
to enable studies of historical demography, population
structure, disease risk factors, and a variety of other
conservation-related biological attributes. Species for which
assembled whole-genome sequences are available will
immediately be more amenable to a variety of biological
studies that can contribute to assessments and science-based
management. Such understanding could help curb the
accelerating extinction crisis and slow the loss of biodiversity
worldwide. Thus, as many threatened or endangered species
should be included in the G10K project as is feasible.

Proposal

To this end, we propose to assemble a ‘‘virtual collection’’ of
frozen or otherwise suitably preserved tissues or DNA
samples representing on the order of 10 000 extant
vertebrate species, including some recently extinct species
that are amenable to genomic sequencing (Table 1). This
collection represents combined specimen materials from at
least 43 participating institutions (Table 2). In many cases,
we have collected both male and female samples and for
certain species several samples that reflect geographic
diversity and/or diversity within localized populations.

Tissues in genetic resource collections are stored by
different methods, which yield varying results with regard to
DNA quality (Edwards et al. 2005). Tissues that are sampled
from the field may be left at ambient temperatures for
several hours before they are finally frozen in liquid nitrogen
and subsequently stored there at or near "80 "C.
Nonetheless, many of these tissues still yield high-quality
DNA (Brumfield R, LSU, personal communication). In
other cases, noncryogenic field buffers are used, although
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with varying results. In addition to DNA quality, permit and
species validation are also important issues to consider
(Supplementary Material, Appendix 1). We will follow 4
general guidelines for G10K sample collection:

1. We seek 20 lg of genomic DNA or about 1 g of frozen
tissue for each target species.

2. Tissues may be field preserved in liquid nitrogen,
ethanol, or dimethyl sulfoxide (DMSO). Initial preser-
vation in liquid nitrogen is strongly recommended for
new acquisitions when field conditions permit. Transport
from the field in liquid nitrogen or dry ice, or the use of
dry shippers at liquid nitrogen temperatures is encour-
aged. In the laboratory, tissues should be stored in "80
"C freezers or in liquid nitrogen. The ‘‘gold standard’’
that would permit cell lines to be harvested is storage in
liquid nitrogen of finely minced tissue fragments
equilibrated in tissue-culture medium containing DMSO.

3. Tissues should be documented with voucher specimens
linked to institutional accession codes when feasible
(preserved carcasses are preferred, although photo
vouchers are acceptable) and DNA Barcode information
will be collected for all specimens (Hebert et al. 2003;
Hanner and Gregory 2007; Ratnasingham and Hebert
2007; Field 2008; Field et al. 2008; Borisenko et al. 2009).
In the case of rare or endangered species, a tissue sample,
locality, identification by a professional zoologist, and
DNA Barcode confirmation or listing in the Interna-
tional Species Information System would be acceptable.

4. All specimens used in the G10K project will be obtained
and relocated in accord with national and international
statutes regulating the collection, use, and transport of
biological specimens.

In addition to samples for DNA extraction, the
collection will include 1006 cryopreserved fibroblast cell
lines derived from 602 different vertebrate species, primarily
mammals, but including representatives of 300 taxa
comprising 42 families of nonmammalian amniotes and 1
amphibian species. These resources provide an additional
window into the unique cell biology of these species.
With the recent development of transformation techniques
to create induced pluripotent stem cells from fibroblast

lines (Okita et al. 2007; Stadtfeld et al. 2008; Yu 2009;
Yusa et al. 2009), the potential of cell-line studies is greatly
expanded. Although it is still unclear how well current
cell-line generation methods can be extended to all
vertebrate clades (Liu et al. 2008; Trounson 2009), we
propose to initiate primary fibroblast cell cultures for as
many species as possible, with a target of at least
2,000 diverse species, as a corollary outcome of the G10K
project. These cell cultures, along with cDNA derived
from primary tissues, will provide direct access to gene
expression and regulation data in the vertebrate species we
catalog and provide a renewable experimental resource to
complement the G10K genome sequences. For at least one
species of each vertebrate order, we propose to assemble
additional genomic resources, including physical maps and
a bacterial artificial chromosome (BAC) library, other cell
lines, and primary tissues for transcriptome analysis. For
these species, we will propose to sequence multiple
individuals to assess within-species diversity, including
members of both sexes to assess sex-chromosome differ-
ences. A resource of this magnitude would help catalyze
a much-needed extension of experimental molecular biology
beyond the very limited set of model organisms it currently
explores.

Integrated analysis and rapid release (genome.gov 2003)
of the G10K data represents a substantial informatics
challenge, beginning with the construction of a sample
tracking database and culminating with the software needed
to support a detailed evolutionary analysis of the many
terabytes of sequence data (Supplementary Material,
Appendices 3 and 4).

The G10K species collection will include tissue/DNA
specimens from 5 major organismal groups: mammals,
birds, amphibians, nonavian reptiles, and fishes (Table 1,
Figure 1). Relevant aspects of each major group compiled by
the Taxon committee chairs follow.

Mammals

Mammals contain a morphologically and behaviorally
diverse assemblage of approximately 5400 species from

Table 1. Counts of vertebrate species stipulated for Genome 10K collection from G10KCOS

Groups

Orders Families Genera Species

With G10K
samples Total

% of
total

With G10K
samples Total

% of
total

With G10K
samples Total

%
of total

With G10K
samples Total

% of
total

Mammals 27 27 100 145 150 97 763 1230 62 1826 5416 34
Birds 32 34 94 182 199 91 1587 2172 73 5074 9723 52
Amphibians 3 3 100 50 56 89 301 510 59 1760 6570 27
Reptiles 4 4 100 63 65 97 751 1087 69 3297 9002 37
Fishes 62 62 100 424 532 80 1777 4956 36 4246 31 564 13
Totals 128 130 98 864 1002 86 5179 9955 52 16 203 62 275 26

Species and other taxa numbers are initially from NCBI taxonomy (www.ncbi.nlm.nih.gov) (Wheeler et al. 2008), as specified by Wilson and Reeder (2005)

for the mammals, Hackett et al. (2008); Howard et al. (2003) for birds, Marjanovic and Laurin (2007); AmphibiaWeb (2009) for Amphibia, Catalog of Fishes

(Eschmeyer 1998) for fishes, The TIGR Reptile Database (Uetz et al. 2007) for reptiles.
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Table 2. List of collections and participating institutions

Institutions Steward(s) Web address

Academy of Natural Sciences, Philadelphia Nate Rice http://www.ansp.org/
American Museum of Natural History Joel Cracraft http://research.amnh.org/ornithology/

personnel/jlc.htm
Australian National University Jennifer A. Marshall Graves http://www.rsbs.anu.edu.au/ResearchGroups/

CGG/index.php
Australian National Wildlife Collection,
Canberra

Leo Joseph http://www.csiro.au/places/ANWC.html

Bell Museum of Natural History, University of
Minnesota

F. Keith Barker http://www.bellmuseum.org/

Biodiversity Institute of Ontario Alexei Borisenko http://www.biodiversity.ca
Biodiversity Research Institute, University of
Kansas

Edward O. Wiley http://www.nhm.ku.edu/fishes/

Burke Museum, University of Washington To be determined http://www.washington.edu/burkemuseum/
collections/genetic/index.php

California Academy of Sciences Jens V. Vindum NA
CIBIO, University of Porto, Portugal Albano Beja-Pereira http://cibio.up.pt/
Cı́rculo Herpetológico de Panamá Roberto Ibáñez http://ara.inbio.ac.cr/SSTN-IABIN/

welcome.htm
CSIRO Marine and Atmospheric Research Alastair Graham http://www.cmar.csiro.au/anfc/
Departamento de Zoologia, I.B., UNESP, Sao
Paulo

Célio F. B. Haddad NA

Field Museum of Natural History, Chicago Harold K. Voris http://www.fieldmuseum.org/
research_collections/zoology/

George Washington University Guillermo Orti http://www.gwu.edu/~biology/faculty/
orti.cfm

Inst of Chemical Biology and Fundamental
Medicine, SB RAS

Alexander S. Graphodatsky http://www.niboch.nsc.ru/eng_index.html

Institut de Recherche pour le Développement,
Paris, France

Philippe Gaubert http://pgaubert.perso.neuf.fr/

Institute of Molecular and Cell Biology,
Singapore

Byrappa Venkatesh http://www.imcb.a-star.edu.sg/php/
venkatesh.php

Instituto Nacional de Cancer, Genetics Division Hector N Seuanez http://www.inca.gov.br/
Kunming Institute of Zoology, Chinese
Academy of Sciences

Ya-ping Zhang http://www.kiz.ac.cn/en/

LIRANS Institute, University of Bedfordshire,
UK,

David Michael Rawson http://www.beds.ac.uk/research/lirans/
personnel/rawson_d

LSU Museum of Natural Science Frederick H. Sheldon http://appl003.lsu.edu/natsci/lmns.nsf/
$Content/Sheldon?OpenDocument

Marine Mammal Institute, Oregon State
University

C. Scott Baker http://mmi.oregonstate.edu/

Monterey Bay Aquarium Research Institute Robert C. Vrijenhoek http://www.mbari.org/molecular
Museo Nacional de Ciencias Naturales
(MNCN), Madrid

David R. Vieites http://www.vieiteslab.com

Museu de Zoologia da Universidade de São
Paulo

Hussam Zaher http://www.mz.usp.br/

Museum of Comparative Zoology, Harvard Scott Edwards http://www.mcz.harvard.edu
Museum of Vertebrate Zoology, UC Berkeley Jimmy A. McGuire http://mvz.berkeley.edu/
Museum Victoria, Australia Joanna Sumner http://museumvictoria.com.au/collections-

research/our-research/sciences/staff/joanna-
sumner/

National Cancer Institute Lab of Genomic
Diversity

Stephen J. O’Brien http://home.ncifcrf.gov/ccr/lgd/

Natural History Museum of Los Angeles
County

To be determined http://www.nhm.org/research

Ocean Park Corporation, Hong Kong Paolo Martelli http://www.oceanpark.com.hk/
Pontificia Universidade Catolica do Rio Grande
do Sul

Sandro Bonatto NA

Royal Ontario Museum (ROM) Robert W. Murphy http://labs.eeb.utoronto.ca/murphy/
San Diego Zoo’s Institute for Conservation
Research

Oliver A. Ryder http://www.sandiegozoo.org/conservation/
about/administrators/oliver_ryder_ph.d/
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1200 to 1300 genera distributed in 3 major lineages:
monotremes (platypus and echidnas—5 species), marsupials
(;330 species, including the koala, kangaroos, and
opossums), and the species-rich eutherian or placental
mammals (;5000 species) (Nowak 1999; Wilson and
Reeder 2005), (Table 1, Figure 2).

TheG10K collection contains exemplars of 145 out of the
150 families (Supplementary Material, Appendix 2, mam-
mals). At present, we have access to;90%of nonmuroid and
nonsciurid rodent genera and nonvespertilionid bat genera.
Ultimately, we will target all 1200 to 1300 genera.

Additional sampling will be applied to deeply divergent,
and especially endangered, or Evolutionary Distinct and
Endangered species (ZSL 2009), currently including all
species of Zaglossus (echidna), Cuban and Hispaniolan
Solenodon, Malayan Tapir (Tapirus indicus), aardvark (Orycter-
opus), and others. For fundamental biological investigation,
another high priority is to sequence species exhibiting
extreme phenotypes, such as deep-sea divers, long-lived

species, high-altitude species, and species with distinct
sensory modalities, such as echolocation. Our ultimate goal
is to include within the collection species spanning the range
of brain size, body size, and morphological convergence:
aquatic species, gliders, lifespan extremes, nocturnals/
diurnals, and social versus solitary species with diverse
mating systems and varying levels of paternal care. We will
also sample domestic animal species that have undergone
recent and rapid evolution and contrast them to their
counterpart wild species.

Capturing wide ecological diversity holds great potential
for identifying the genomic changes underlying the major
mammalian anatomical and behavioral transformations,
including the evolution of advanced social and eusocial
systems. Determining the genomic infrastructure for
extreme physiological responses provides a unique oppor-
tunity for understanding the limits of mammalian tissues
from resistance to disease to the ability to adapt to
environmental disturbance.

Table 2. Continued

Institutions Steward(s) Web address

Smithsonian Institution, National Museum of
Natural History

Roy W. McDiarmid http://vertebrates.si.edu/herps/

Smithsonian Tropical Research Institute Eldredge Bermingham http://www.stri.org/
South Australian Museum Steve Donnellan http://www.samuseum.sa.gov.au/page/

default.asp?site51&id51307
Southwest Fisheries Science Center, NMFS Gabriela Serra-Valente http://swfsc.noaa.gov/

textblock.aspx?Division%205%20PRD%205
%20229%205%2012498

Swedish Museum of Natural History Per Ericson http://www.nrm.se/en/menu/
researchandcollections/departments/
vertebratezoology.74_en.html

Texas A&M University William J. Murphy http://gene.tamu.edu/faculty_pages/
faculty_MurphyW.php

The Frozen Ark Olivier Hanotte http://www.frozenark.org/
The Global Viral Forecasting Initiative Matthew LeBreton www.gvfi.org
Universidade Federal do Rio de Janeiro,
Genetics Dept.

Miquel Moreira & Cibele
Bonvicino

http://www.inca.gov.br/
conteudo_view.asp?id5414

University of Auckland, New Zealand, School
of Biological Sciences

Rochelle Constantine &
C. Scott Baker

http://www.sbs.auckland.ac.nz/

University College-Dublin To be determined http://www.ucd.ie/research/people/
biologyenvscience/dremmacteeling/

University of California, Riverside To be determined http://www.biology.ucr.edu/people/faculty/
Springer.html

University of California, Santa Cruz,
Department of Ecology & Evolutionary Biology

Barry Sinervo http://bio.research.ucsc.edu/;barrylab/

University of California, Santa Cruz, Mammal
Physiology Program

Terrie M. Williams http://bio.research.ucsc.edu/people/williams/

University of Kansas, Department of Ecology
and Evolutionary Biology

Rafe Brown http://www.nhm.ku.edu/rbrown/

University of Minnesota, Cell Biology &
Development

Tony Gamble http://www.tc.umn.edu/;gambl007/

University of Montana Gordon Luikart http://dbs.umt.edu/research_labs/
allendorflab/

University of Sheffield Terry Burke http://www.shef.ac.uk/molecol/terry-burke
University of Texas at Arlington Jonathan A. Campbell http://biology.uta.edu/herpetology
Villanova University Aaron Bauer http://www.villanova.edu/artsci/biology/
Zoological Institute, Technical University of
Braunschweig

Miguel Vences http://www.mvences.de/

Zoological Museum of Copenhagen, Denmark Jon Fjeldsa http://zoologi.snm.ku.dk/english/
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Birds

Like eutherian mammals, living birds arose in the mid-
Cretaceous (;100 Ma). Since then, birds have dispersed
across the globe and now occupy most of Earth’s habitats
and ecosystems representing a wide array of lifestyles. At
this time, we know very little about the genetic and
developmental underpinnings of this biological diversity, as
high-quality genome sequences are available for only 2
species, the chicken (Gallus gallus) and zebra finch
(Taeniopygia guttata). We expect that many key questions
can and will be addressed as additional whole-genome
sequences are accumulated and interpreted in the context of
an increasingly accurate comparative framework (Hackett
et al. 2008).

During recent decades, the avian systematics community
has built large collections that house high-quality genetic
samples of a substantial portion of avian diversity. These

collections provide an essential resource for future genomic
analyses of avian structural, functional, and behavioral
diversity. With representation from 15 natural history
collections distributed globally, the G10K collection
includes specimens from 94% of the 34 orders, 91% of
the 199 families, 73% of the 2172 genera, and 52% of
the 9723 species of birds (Table 1, Figure 3). Every order
is represented in multiple biospecimen collections, as are all
but 17 families and all but 585 genera, ensuring at least 1
sample of high quality. We plan to sequence both sexes for
a number of lineages, including the ratite birds, which
like many avian species are externally monomorphic
and, additionally, have relatively undifferentiated sex
chromosomes.

Sampling each genus may result in oversampling of some
avian orders and families (such as the extremely diverse
passerines and hummingbirds), but we will strive to capture
maximal phylogenetic coverage across the avian tree.

Figure 1. Consensus phylogeny of the major lineages of vertebrates. Topology and divergence dates (Ma) are consensus
estimates derived from Hedges and Kumar (2009) and included citations and amended per Benton and Donoghue (2007), Janvier
(2006), Maisey (2000), and Sansom et al. (1996). Following the common names of taxon groups in parentheses is the number
of living species for that group followed by the number of G10K species with specific biospecimens nominated for G10K whole-
genome sequence.
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Figure 2. Consensus phylogeny of the major lineages of mammals. Topology and dates (Ma) are consensus estimates derived
from Hedges and Kumar (2009) and included citations. Following the common names of taxon groups in parentheses is the
number of living species for that group, followed by the number of G10K species with specific biospecimens nominated for G10K
whole-genome sequence.
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Figure 3. Consensus phylogeny of the major lineages of birds. Topology and dates (Ma) are derived from combined-data tree
reported in Hackett et al. (2008), rendered ultrametric by nonparametric rate-smoothing (Sanderson 1997) and scaled to a root age
of 119 Ma based on an average of multiple dating studies (van Tuinen et al. 2006). Following the common names of taxon groups
in parentheses is the number of living species for that group followed by the number of G10K species with specific biospecimens
nominated for G10K whole-genome sequence.
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Nonavian Reptiles

Nonavian reptile diversity includes snakes, lizards, turtles,
crocodilians, and 2 species of tuatara. Because the traditional
view of interfamilial relationships (based on morphology)
differs appreciably from recent molecular phylogenies and
the molecular phylogenies differ from one another, major
issues such as the origin of snakes (which are clearly nested
within lizards) remain controversial (Fry et al. 2006; Vidal
and Hedges 2009). In addition to these uncertainties, the
phylogenetic relationships within and among the major
groups of reptiles (i.e., families) are often uncertain, for
example, among the ‘‘colubroid’’ snakes (Hedges et al. 2009;
Zaher et al. 2009) and species-rich assemblages of lizards.
Major revisions have occurred within many groups, such as
the geckos, where additional families are now recognized

(Gamble et al. 2008). Following online databases including
the TIGR Reptile Database (Uetz 2009), reptile diversity is
distributed among the following groupings: Snakes are
divided among 18 families, 484 genera, and 3313 species;
lizards comprise 30 families, 499 genera, and 5351 species;
and turtle diversity is divided among 13 families, 94 genera,
and 313 species (Turtle Taxonomy Working Group 2007).
Crocodiles include 23 species divided among 9 genera in 3
taxonomic families. And the 2 species of tuatara are the only
extant members of the formerly diverse and widespread
Rhyncocephalia. Total reptile diversity therefore includes 65
families, 1087 genera, and 9002 species. The G10K collection
has 97%, 69%, and37%of these, respectively (Table 1, Figure 4).
In addition to these DNA and tissue samples, substantial BAC-
library resources are available for nonavian reptiles that could
facilitate the G10K project (Wang et al. 2006).

Figure 4. Consensus phylogeny of the major lineages of nonavian reptiles. Topology and dates (Ma) are consensus estimates derived
from Hedges and Kumar (2009) and included citations. Following the common names of taxon groups in parentheses is the number of
living species for that group followed by the number of G10K species with specific named biospecimens nominated for G10K whole-
genome sequence.
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Amphibians

The Class Amphibia is divided into 3 orders: Anura (frogs),
Caudata (salamanders), and Gymnophiona (caecilians),
derived from a common ancestor 300 Ma and representing
the only 3 surviving lineages from amuch greater diversity that
existed before the Permian extinction 250 Ma (Marjanovic
and Laurin 2007). These major clades contain 5811 frog
species, 583 salamander species, and 176 caecilian species,
respectively (AmphibiaWeb 2009). Amphibian taxonomy is
currently in a state of flux, with many new proposed
taxonomic changes resulting from molecular phylogenetic
analyses. Although controversial, we summarize amphibian
diversity and tissue holdings for higher taxonomic groups
(Supplemental Material, Appendix 2, amphibians) following
the AmphibiaWeb (2009) database. This taxonomy contains
56 families of amphibians shared among the 3 orders,

containing a total of 510 genera and 6570 species. The G10K
collection contains a total of 1760 species (27%), 301 genera
(59%), and 50 families (89%) (Table 1, Figure 5).

Amphibians are notorious for their morphological
homoplasy due to developmental constraints (Shubin et al.
1995) as well as spectacular adaptive convergences in
morphology (Bossuyt and Milinkovitch 2000), behavior, and
development, for example, roughly 15 independent evolu-
tionary origins of direct development from an ancestral
biphasic life history (Hanken et al. 1997). Perhaps the most
striking example is the convergent evolution in toxicity,
coloration, and parental care between mantellid frogs of
Madagascar and dendrobatid frogs in the Neotropics, as well
as repeated parallel evolution of these traits within each of
these 2 taxonomic families (Vences et al. 2003; Chiari et al.
2004). Such homoplasies have wreaked havoc on amphibian
taxonomy, but offer marvelous opportunities to study the

Figure 5. Consensus phylogeny of the major lineages of amphibians. Topology and dates (Ma) are consensus estimates
derived from Hedges and Kumar (2009) and included citations. Following the common names of taxon groups in parentheses
is the number of living species for that group followed by the list of G10K species with specific named biospecimens
nominated for G10K whole-genome sequence.

668

Journal of Heredity 2009:100(6)



genetic basis of the repeated evolution of complex traits
involved in both morphological and behavioral evolution.

Collectively, amphibians are of global conservation
concern, most recently because of a rapid decline in
populations and disappearance of species (Mendelson
et al. 2006). A chytrid fungus, Batrachochytrium dendrobatidis,
has been implicated in these declines (James et al. 2009), but
habitat loss, pollutants, pesticides, herbicides, fertilizers, and
climatic changes are also factors of concern. In the face of
such diversity crises, sequencing many species of amphib-
ians has enormous potential to provide insight into novel
antimicrobial compounds, given that many species of frogs
harbor a diverse array of such compounds (Zasloff 2002;
Vanhoye et al. 2003). The same antimicrobial peptide
sequence is rarely recovered from closely related species.
Genomic approaches to searching for such antimicrobial
diversity using stem cell lines, transcriptomes, and whole-
genome sequencing are clearly warranted.

Fishes

Fishes include all nontetrapod vertebrates comprising
1) jawless vertebrates (hagfishes and lampreys, 114 species),
2) chondrichthyans (sharks, rays, and chimaeras, ;1200
species), 3) actinopterygians (ray-fin fishes, ;30 000
species), and 4) piscine sarcopterygians (coelacanths, lung-
fishes, 8 species). Total described diversity comprises
approximately 31 500 species (Eschmeyer 1998), but actual
diversity is probably greater than 50 000 species. A broad
outline of the evolution of these most deeply branching of
the vertebrate clades is provided by Stiassny et al. (2004).

Fishes account for nearly 50% of all described living
species of vertebrates, exhibiting a vast diversity in their
morphology, physiology, behavior, and ecological adapta-
tions and providing an exceptional opportunity to study
basic vertebrate biology. Fishes are also important as a food
source for human consumption totaling about US $51
billion in trade in 2001 (Tidwell and Allan 2001). In 2006,
global capture fisheries were estimated at US $91 billion and
global aquaculture (including invertebrates) at US $79 billion
(FAO 2008). There is also huge global recreational
spending. Fishery activities of all types probably total in
excess of US $200 billion per year (FAO 2008). Some 16%
of all human protein consumption is fish protein, and about
1 billion people depend on fishes as their major source of
protein. Because of the great demand, many groups of fishes
are overexploited. Molecular data for commercially impor-
tant species of fishes, especially those that are currently
endangered and those raised by aquaculture, will be valuable
in designing strategies for maintaining sustainable stocks and
combating disease and other threats.

Fish tissues for the G10K project reside in a number of
institutions and are usually curated as parts of formal
institutional collections. The total number of species
represented by tissue samples is not known precisely, but
6,400 species have been DNA barcoded and collections of
new species continue to be added (Wiley E, KU, personal

communication). Fresh material from many commonly
available species can be obtained easily from fishing boats
and the pet-trade industry for both genome and other
molecular projects. The G10K project has in hand suitable
samples from 62/62 orders (100%), 424/532 families
(80%), 1777 of about 4956 genera (36%), and 4246 of
about 31 564 named species (13%) (Table 1, Figure 1). We
have identified other partner institutions that are anticipated
to provide a minimum of 2500 additional species that will be
officially incorporated into the project.

The largest known animal genome is that of the marbled
lungfish, Protopterus aethiopicus, with a haploid size of 133 pg
(about 130 Gbp), followed by the salamanders Necturus lewisi
and Necturus punctatus at 120 pg (about 117 Gbp) (Gregory
2009). The genomes are bloated through the activity of
transposons that, combined with their enormous size, make
genome sequencing and assembly extremely challenging.
Although RNA sequencing is one avenue by which we may
get direct access to interesting biology in these species, we
nevertheless recommend that full-genome sequencing pro-
jects be undertaken for large-genome species. There are
important questions pertaining to gene regulation, genome
structure, and genome evolution that cannot be answered
from analysis of transcribed RNA alone.

Discussion

Careful observations of the morphological and functional
adaptations in vertebrates have formed the basis of
biological studies for a millennium, but it is only recently
that we have been able to observe the action of evolution
directly at the genetic level. It is not known whether
convergent adaptations in independent lineages are often
governed by analogous changes in a small number of
orthologous genome loci or if macroevolutionary events in
separate lineages usually result from entirely idiosyncratic
combinations of mutations. The evidence from several
recent studies points toward the former hypothesis (Eizirik
et al. 2003; Nachman et al. 2003). For example, adaptive
hind-limb reduction occurred independently many times in
different lineages and even within the same species, just as
sticklebacks in different lakes adapted from an oceanic to
a freshwater environment (Shapiro et al. 2006). These
stickleback adaptations are all traced to independent
deletions of the same distal enhancer of the PITX2
development gene, demonstrating remarkable convergent
evolution at the genomic level (Kingsley D, HHMI, personal
communication). By cataloging the footprints of adaptive
evolution in every genomic locus on every vertebrate
lineage, the G10K project will provide the power to
thoroughly test the ‘‘same adaptation, same loci’’ hypothesis,
along with other fundamental questions about molecular
adaptive mechanisms.

In the course of this investigation, we will discover the
genetic loci governing fundamental vertebrate processes.
The study of the evolution of viviparity is an outstanding
example. Birds, crocodiles, and turtles all lay eggs, whereas
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apart from monotremes, mammals are all live bearers. Thus,
there was one fundamental transition from oviparity to
viviparity in these amniotes, which caused a fundamental
reorganization in the developmental program and large-scale
change in gene interactions that we are only just beginning
to understand. Remarkably, however, nonavian reptiles have
over 100 independent evolutionary origins of viviparity
(Blackburn 2000). Fish have an equally spectacular variety of
such transitions, along with some amphibians, such as the
frog genus Gastrotheca, which includes species with placental-
like structures (Duellman and Trueb 1986). These many
independent instances of the evolution of viviparity afford
an extraordinary opportunity to explore the genomics
behind this reproductive strategy.

The architecture of sex determination in vertebrates
is similarly diverse, with examples of XY, ZW, and
temperature-dependent mechanisms. The G10K project
thus provides an equally exciting opportunity for dissection
of this diversity. In fact, a few vertebrate species have
abandoned sex altogether. What happens when an asexual
genome descends from an ancestral sexual genome, as has
occurred repeatedly in Aspidoscelis lizard lineages? Are the
independent parthenogenetic genomes parallel in any way?
In one group of lizards, genus Darevskia, the formation of
unisexual species is phylogenetically constrained (Murphy
et al. 2000), yet in others, for example, Aspidoscelis, it is not.
Many species of lizards and snakes are also known to have
facultative parthenogenesis: Unmated females produce
viable eggs and offspring. Unisexuality also occurs in
amphibians and fishes by gynogenesis, hybridogenesis, and
in amphibians by kleptogenesis (Bogart et al. 2007).
Sequential hermaphrodite fishes can change their sex. Do
these parallel convergent changes involve the same genes?
The evolution of longevity remains another question of
great interest. What mechanisms are responsible for the
2 orders of magnitude differences among vertebrates and
what sets the limits for long-lived species found in each of
the vertebrate clades? By identifying genomic loci that
support different evolutionary innovations such as these, the
data from the G10K project will drive fundamental progress
in molecular and developmental biology.

The symphony of vertebrate species that cohabit on our
planet attests to underlying life processes with remarkable
potential. Genomics reveals a unity behind these life
processes that is unrivaled by any other avenue of
investigation, exposing the undeniable relatedness and
common origin of all species. By revealing genetic
vulnerabilities in endangered species and tracking host–
pathogen coevolution, genomics also plays an increasing
role in sustaining biodiversity and combating emerging
infectious diseases. Thus, the information in the genomes of
threatened and endangered species revealed by the G10K
project will be crucial to conservation efforts (Ryder et al.
2000; O’Brien 2003; Ryder 2005; Kohn et al. 2006; Schwartz
et al. 2009). In studying the genomes of recently extinct spe-
cies as well, molecular aspects of species’ vulnerability can
be revealed and vital gaps in the vertebrate record restored.
In all these ways, the G10K project will engage the public in

the quest for the scientific basis of animal diversity and in
the application of the knowledge we gain to halt extinctions
and improve animal health.

As the printing of the first book by Johannes Gutenberg
altered the course of human history, so did the human
genome project forever change the course of the life sciences
with the publication of the first full vertebrate genome
sequence. When Gutenberg’s success was followed by the
publication of other books, libraries naturally emerged to
hold the fruits of this new technology for the benefit of all
who sought to imbibe the vast knowledge made available by
the new print medium. We must now follow the human
genome project with a library of vertebrate genome
sequences, a genomic ark for thriving and threatened species
alike, and a permanent digital record of countless molecular
triumphs and stumbles across some 600 million years of
evolutionary episodes that forged the ‘‘endless forms most
beautiful’’ that make up our living world.

Supplementary Material

Supplementary material can be found at http://www.
jhered.oxfordjournals.org/.
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050, and Laboratório de Biologia e Parasitologia de
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Janeiro, Rua André Cavalcanti 37, 4o andar, Rio de Janeiro,
RJ 20231-050, and Department of Genetics, Universidade
Federal do Rio de Janeiro, Cidade Universitária, CCS, Bloco
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